End-bridging is required for pol μ to efficiently promote repair of noncomplementary ends by nonhomologous end joining
نویسندگان
چکیده
DNA polymerase mu is a member of the mammalian pol X family and reduces deletion during chromosome break repair by nonhomologous end joining (NHEJ). This biological role is linked to pol mu's ability to promote NHEJ of ends with noncomplementary 3' overhangs, but questions remain regarding how it performs this role. We show here that synthesis by pol mu in this context is often rapid and, despite the absence of primer/template base-pairing, instructed by template. However, pol mu is both much less active and more prone to possible template independence in some contexts, including ends with overhangs longer than two nucleotides. Reduced activity on longer overhangs implies pol mu is less able to synthesize across longer gaps, arguing pol mu must bridge both sides of gaps between noncomplementary ends to be effective in NHEJ. Consistent with this argument, a pol mu mutant defective specifically on gapped substrates is also less active during NHEJ of noncomplementary ends both in vitro and in cells. Taken together, pol mu activity during NHEJ of noncomplementary ends can thus be primarily linked to pol mu's ability to work together with core NHEJ factors to bridge DNA ends and perform a template-dependent gap fill-in reaction.
منابع مشابه
Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences
'Classical' non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA p...
متن کاملCreative template-dependent synthesis by human polymerase mu.
Among the many proteins used to repair DNA double-strand breaks by nonhomologous end joining (NHEJ) are two related family X DNA polymerases, Pol λ and Pol µ. Which of these two polymerases is preferentially used for filling DNA gaps during NHEJ partly depends on sequence complementarity at the break, with Pol λ and Pol µ repairing complementary and noncomplementary ends, respectively. To bette...
متن کاملEssential role for polymerase specialization in cellular nonhomologous end joining.
Nonhomologous end joining (NHEJ) repairs chromosome breaks and must remain effective in the face of extensive diversity in broken end structures. We show here that this flexibility is often reliant on the ability to direct DNA synthesis across strand breaks, and that polymerase (Pol) μ and Pol λ are the only mammalian DNA polymerases that have this activity. By systematically varying substrate ...
متن کاملBridging of double-stranded breaks by the nonhomologous end-joining ligation complex is modulated by DNA end chemistry
The nonhomologous end-joining (NHEJ) pathway is the primary repair pathway for DNA double strand breaks (DSBs) in humans. Repair is mediated by a core complex of NHEJ factors that includes a ligase (DNA Ligase IV; L4) that relies on juxtaposition of 3΄ hydroxyl and 5΄ phosphate termini of the strand breaks for catalysis. However, chromosome breaks arising from biological sources often have diff...
متن کاملNonhomologous DNA end joining in Schizosaccharomyces pombe efficiently eliminates DNA double-strand-breaks from haploid sequences.
Cells of higher eucaryotes are known to possess mechanisms of illegitimate recombination which promote the joining between nonhomologous ends of broken DNA and thus may serve as basic tools of double-strand-break (DSB) repair. Here we show that cells of the fission yeast Schizosaccharomyces pombe also contain activities of nonhomologous DNA end joining resembling the ones found in higher eucary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 36 شماره
صفحات -
تاریخ انتشار 2008